by |
||
Picture: The first time the prototype charger was running at the site in pilot village Cambulo, Banaue, Ifugao prov., Philippines. |
Contents |
1 | Introduction |
1.1 | How did it all start: The Cambulo project |
1.2 | Plan for introducing the firefly concept in other areas |
1.3 | Set-up of the book |
2 | Key characteristics of the firefly system |
2.1 | Micro Hydro systems in general |
2.2 | The firefly system itself |
2.3 | The user group |
2.4 | Battery is the most important component |
2.5 | The firefly compared to other lighting systems |
3 | Local conditions |
3.1 | Availability of year-round water |
3.2 | Need for electric light |
3.3 | Possibilities for local production |
3.4 | Social and economic aspects |
4 | The charger |
4.1 | Standard charger design |
4.2 | The alternator |
4.3 | The runner |
4.3.1 | Making the blades |
4.3.2 | Making the side disks |
4.3.3 | Soldering it together |
4.4 | Fixing the runner on the shaft and aligning it |
4.5 | Seal around the shaft |
4.6 | The nozzle |
4.7 | The frame |
4.8 | The covers and shield |
4.9 | The switchboard |
4.9.1 | Functions of the switchboard |
4.9.2 | Field current control |
4.9.3 | The indicator |
4.9.4 | Adjustment of the voltage regulator |
4.9.5 | Charging characteristic |
4.9.5.1 | Introduction |
4.9.5.2 | The relation between charging current and battery voltage |
4.9.5.3 | When is a battery charged enough |
4.9.5.4 | Voltage and current as a function of charging time |
4.9.5.5 | Effects of battery type on charging characteristic |
4.9.5.6 | Effects of the charger on charging characteristic |
4.9.6 | Building the switchboard |
4.10 | Installing the charger |
4.10.1 | Introduction |
4.10.2 | Linking in with irrigation technology |
4.10.3 | Designing an inlet |
4.10.4 | Designing the canal |
4.10.5 | A site for the charger |
4.10.6 | Linking the parts together |
4.10.7 | The forebay tank and screen |
4.10.8 | The penstock pipe |
4.11 | Testing and troubleshooting |
4.11.1 | Introduction |
4.11.2 | Final check |
4.11.3 | Trying it out |
4.11.4 | Measuring its performance |
4.11.5 | Troubleshooting |
4.11.6 | Checking diodes of an alternator |
5 | The home system |
5.1 | The battery |
5.2 | Lamps, switches and cables |
5.3 | Minor uses for electricity |
5.4 | The charge indicator |
5.4.1 | Introduction |
5.4.2 | How to avoid deep discharge of batteries |
5.4.3 | Buying components |
5.4.4 | Building the indicators |
5.4.4.1 | Electronic circuit and parts list |
5.4.4.2 | Print lay-out and making the PCB |
5.4.4.3 | Fitting the components |
5.4.5 | Testing and troubleshooting |
5.4.6 | Calibrating indicators |
5.5 | Installing home systems |
9 | Literature |
Please note: The 1995, paper version of this manual was intended to be a draft version only. There was a plan for more chapters and annexes. I already made cross references to these and I listed them in the contents section. As things look now, it is unlikely that I will ever write these missing paragraphs and annexes. To stay close to the 1995 version, I didn't remove these 'ghost' paragraph- and annex headings from the contents section and all cross references to these. Cross references to existing paragraphs are links now while cross references to ghost paragraphs and annexes are just text. |
|
6 | Using the system |
6.1 | Manual for users |
6.2 | Manual for operators |
6.3 | Maintenance and repair |
6.4 | Possible financial arrangements |
7 | What is needed for a demo project |
7.1 | Materials |
7.2 | Tools |
7.3 | Technical skills |
7.4 | Technical support from outside |
7.5 | Money |
8 | Organisational aspects of a demo project |
annex 0 | Formulas and reference data |
annex A | More about alternators |
annex B | Adapting the charger design |
B.1 | Matching charger capacity with user needs |
B.2 | Designing the turbine part |
B.2.1 | Firefly turbine differs from normal crossflow design |
B.2.2 | Principles behind design calculations |
B.2.3 | Energy calculations |
B.2.4 | Runner diameter and alternator speed |
B.2.5 | Head, runner width and dimensions of nozzle |
B.3 | Design for a large capacity - low head charger |
B.4 | A switchboard for charging more batteries in one go |
annex C | More about batteries |
C.1 | General characteristics of lead-acid batteries |
C.2 | Chemical reactions |
C.3 | What makes batteries wear out |
C.3.1 | Corrosion of grid in positive plate |
C.3.2 | Active material falling out of positive plate |
C.3.3 | Sulphatising |
C.3.4 | Poisoning by dirt or unpure water |
C.3.5 | Mechanical damages |
C.4 | Open cirquit voltages |
C.5 | Internal resistance |
C.6 | Gassing voltage |
C.7 | Testing batteries |
annex D | More about charge indicators |
D.1 | Strategy to prevent deep discharge of batteries |
D.2 | Demands to charge indicator design |
D.3 | Electrical characteristics of indicator design |
D.3.1 | Open circuit voltages |
D.3.2 | Current compensation |
D.3.3 | The way the indicator works |
D.4 | Electronic cirquit of charge indicator |
D.4.1 | The electronic cirquit itself |
D.4.2 | Switch S |
D.4.3 | Supply voltage |
D.4.4 | The current shunt |
D.4.5 | The LM 3914 `display driver' chip |
D.4.6 | The voltage at the `sig in' input |
D.4.7 | The reference voltages and the reference current |
D.4.8 | Temperature stability |
D.5 | Checking components |
D.6 | Making PCB's |
annex E | Building your own testing and calibrating equipment |
E.1 | A stabilised voltage supply |
E.2 | A speed counter / diode tester |
E.3 | A small electrical drill |
annex F | Direct connections instead of batteries |
annex G | Environmental aspects |
annex H | Social and economical aspects |
annex I | Report on Cambulo pilot project |
annex J | Selecting a site |
annex K | Alternatives for the home system |
List of figures |
List of tables |
List of text boxes |
Tips for reading and printing this manual |
Preface to 1995 draft, paper version |
This book is meant as a manual for building a firefly Micro Hydro system and setting up a firefly demonstration project. It is still a draft version. The chapters on technical issues are reasonably well worked-out by now. The introduction chapter, the ones on the firefly system in general and on local conditions have not been written with that much care. The last two chapters and many of the annexes have not been written yet. In an attempt to keep copying and postage costs within budget, the annexes that are available, are not printed in this book. These can be requested with me. Most of them deal with the considerations behind the technical design and are not relevant for people who just want to build a system. Background information that might be relevant to some readers, has been printed in boxes dispersed through the text. To keep lay-out work simple, these boxes are not printed as separate blocks of text, but only printed in italics and numbered.
For people who have got the previous draft version (of July 1994), an overview of the major changes might be interesting:
To improve this draft version further and turn it into a useable book, I would very much appreciate reactions from readers. So please take time to write me your comments.
Another request to readers: I would like to receive data on firefly systems that have been built and installed. Aspects that are important to me are:
I know that answering these questions in detail would take too much time for most readers. So please write down some basic information rather than to postpone writing until you find time to answer them all. Of course I am willing to give advice to readers who write me about problems they could not solve themselves.
Finally, I would like to thank some of the people who have contributed to my work on the firefly system. First there is engr. Simon Taylor, my successor at PRRM-Ifugao. His letters gave many hints on aspects of the design that weren't worked out properly yet and kept me in touch with what happened in the Cambulo project. Two frends gave valuable comments on the technical design: Willem Steyvers van Orsselen, a marine engineer, and Siem Broersen, an electronic engineer. Then there were the people who took the time to test-built some major parts: Catharien Ternisscha van Scheltinga and Jacobijn van Etten who built the charge indicator, and Fleur de Bruin, Gonnie van Dijk, Joost Kaptein, Eric Schulte, Maurice Simons, Saskia Stolwijk, Dominique van Unen en Josefien Versteeg, the `Gouda Group' high school students who built a charger and Theo van der Geest, their physics teacher. Fa. J. Dignum and sons let me to use their tractor and irrigation pump for testing a charger. Finally I would like to thank the people from `Casa de Pauw' for allowing me to use their workshop and computers, with special thanks to Wim van der Hoek, who kept me going with many cups of coffee, funny remarks and inspiring comments.
There are many more people who have contributed to this project, too many to mention them all here. I won't forget them...
Jan Portegijs, 9 September 1995
Copyright: Jan Portegijs, 1995.
Copying minor parts of this book with literature reference is
allowed without prior authorisation. Copying major parts or the
whole is allowed if the copies are meant for private use only.
Preface to 2003, internet version |
A lot has happened since I finished the draft version in 1995: I went back to the Philippines to support two Philippine organisations with their efforts to introduce the firefly. This trip was paid by Dutch ODA dept. and I started my own little consultancy enterprise to qualify for that funding. My frend Siem Broersen and I developed the 'Humming bird' Electronic Load Controller / Induction Generator Controller and I wrote a building manual on that. Meanwhile, I got to know a lovely, pretty woman. We decided to try our luck and by now, we have two nice kids that need our care. Since this first ODA job, I hardly earned any money with my consultancy work so did odd jobs. Eventually, I ended up in computer work, making industrial automation software. Now I am working for a large company that produces high-tech machines for the computer chips industry.
One thing did not happen: I never wrote the missing chapters and annexes for this manual... And I don't think I ever will so quite likely, this manual will forever remain an incomplete, draft version. There is one obvious reason: I don't want to spend all of my spare time for the next year writing them. But there are some other reasons too:
So this is what I want to do: Build and maintain a web site on firefly projects worldwide, with reports, photo's, contact addresses, links to sites that people have made themselves, see:
http//www.microhydropower.net/mhp_group/portegijs/firefly_exp/ffexp_index.html
If you have something to show or tell, mail it to me and I will see whether it fits in.
Apart from several mistakes that were corrected and a small number of additions, this downloadable version is identical to the printed version of September 1995.
Jan Portegijs,
9 February 2003
Additions and corrections to 1995 draft, paper version |
This section is meant for people who have the paper version and would like to update it. In this internet version, these additions and corrections have of course been made already.
Insert at page 4-10 under figure 4.7:
Hacksaw sawblades can be used also.
In charger building workshops in the Philippines, people used hacksaw sawblades of which about half of the height of the blade was grinded away and probably even more at the side where it touches the outer edge of the slot. With such sawblades fitted in a normal hacksaw, they could cut the slots quite fast. However, the side disks I have seen, had slots with radiuses quite a bit larger than the design value of 14.2 mm and consequently, blades will be less strong. Also the width at the teeth is only 1.0 mm instead of 1.4 mm for jigsaw sawblades. One could try to widen the slot by cutting away material from one of the sides, but this means extra work and a less smooth result. Normally, only 1.0 mm thick blades will fit in (instead of 1.25 mm) and this makes the blades even weaker. If you are interested, see the picture "Joel Cubit cutting a side disk" in:
http://www.microhydropower.net/mhp_group/portegijs/firefly_exp/ANEX_s.html
Insert at page 4-27 between
"Both versions have been tested and worked fine up to free
running speed at respectively 12 and 15 m head"
and
"With a pulley that consists of two halves..."
Anti-splashing ring for seal for pulley in one piece
With the seal type for a pulley in one piece, there was still a leakage problem: Some water comes through and gathers at the bottom of the alternator compartment. It does not pose a real danger as it comes through as a liquid and not as a fine mist of water droplets that can be sucked into the alternator: One could even drill a hole through the separation sheet at its lowest point to get rid of it.
Probably the water can come through because there is a jet of water leaking away between the runner and the nozzle. This jet hits the separation sheet just outside of the pulley and apparently, some water is forced inwards through the narrow gap between the pulley and this sheet. A solution would be to fit an anti-splashing ring of 0.5 mm galvanised iron sheet, inner diameter = 6 mm, outer diameter = 100 mm between the runner and the pulley (see fig. 4.12). This ring should prevent the water jet from splashing against the separation sheet at high speed. I havent tested this solution yet, please let me know whether it works.
Insert on page 4-31 below figure 4.16:
Adjustable nozzle.
Instead of fitting a suitably sized blocking timber inside the nozzle, one could also adapt nozzle design such that the flow through it, can be adjusted. This can be done by making part of the inward side hinge towards the bent side. See:
http://www.microhydropower.net/mhp_group/portegijs/firefly_exp/Tech_issues.html#adjustable_nozzle"
for a design. Such an adjustable nozzle comes in handy for:
- A demonstration charger that will be installed temporarily at sites with different heads.
- When available flow is less than the charger needs. Then one could adjust the nozzle such that it takes just a bit less flow than the canal provides so that the penstock remains full of water and the charger produces some power. Without reducing the flow, air would enter the penstock pipe, the charger would operate at a reduced head and a reduced flow and power output would be minimal.
Insert on page 4-44 at the end of par. 4.9.1:
Electronic switchboard.
There is also a design for a fully electronic switchboard, see http://www.microhydropower.net/mhp_group/portegijs/firefly_exp/Tech_issues.html#elect_switchb
It is more user-frendly and it can charge two batteries in one go. But it requires quite some electronics experience to build.
Insert on page 4-62 between:
"When the switchboard is ........... and might make short
circuit etc.:
and
"Box 4.15: Voltage spikes"
Mechanical regulator might work inaccurately
Mechanical regulators might overcharge batteries batteries when used in a firefly switchboard. Once the battery becomes charged and voltage surpasses 14.7 V, the regulator does not reduce field current properly, but continues to provide full field current. Consequenty the battery is charged further and battery voltage rises to well over 15 V. Probably, this is caused by the contacts of the voltage regulator relais sticking together after having sparked a little. In a car, this problem would not occur because:
- With the motor running, the voltage regulator will vibrate. This is enough to make the contacts come loose
- The alternator can produce a much higher charging current. Then battery voltage with a fully charged battery might be well over 17 V, so the voltage regulator coil will pull the contacts loose more strongly.
The extra force needed to pull loose sticking contacts will differ all the time so this problem can not be solved by to readjusting the regulator to a lower voltage: Then on other occasions, it won't charge batteries well enough. It makes sense to check whether the spark extinghuishing diode is functioning properly. If this doesn't help: Look for an electronic regulator.
Change in table 5.2: Parts list for the charge indicator
On page 5-13, the number of red LED's should be 2 pc (instead of 3). The number of green LED's should be 5 pc (instead of 4).
Size of standard PCB board is 160 mm (instead of 150).
On page 5.16, replace "150" by "160" in the following paragraph:
- Are the dimensions still correct. The cadre around the 12 copies should measure 160 <instead of 150> x 100 mm. If on the copy, the length deviates more than 5 mm from this 160 <instead of 150> mm, the transparant is unusable because the pins of the LM 3914 chip would fit badly in the holes of <remove "on"> such a PCB.
At page 5-17 add "the diode" in paragraph:
- The square ones, for the copper wire switch, the diode and for the connections to the outside. These can best be drilled with 1 mm, so that ...
On page 5-16, add new figure
Fig. 5.5b: Alternative: Eight copies of PCB design with current shunt.Click on the link to find this figure, then right-click on the figure and select "save picture as" to copy it to your local computer and print this copy at 300 DPI (Dots Per Inch) using an imaging or photo processing programme.
Insert on page 5-20 between:
"....the `B-' and `L-connection must be short-circuited with
a piece of wire."
and:
"As stated in the parts list, the current shunt consists......"
Instead of making a current shunt from copper wire, one could also use the PCB design of fig. 5.5b with an on-board current shunt. With this PCB design, there is a copper strip between `B-' and `L-' that has such a length and width that its resistance is ca. 0.02 Ohm. Of course also thickness of this copper strip plays a role, so it can only be used with PCB material with the usual 0.035 mm copper layer. When in doubt: Check resistance afterwards by having a stable DC current going through it (e.g. from a lamp connected to a battery) and measuring voltage drop over the shunt with a digital tester on mV DC range.
Insert new text in parts list at page 5-12 in column 1 under "Current shunt, 0.02 Ohm"
(or use PCB design with on-board current shunt, see fig. 5.5b)
More information on hydropower at the microhydro webportal
FastCounter by bCentral |